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Abstract
We present the results of a systematic survey of numerical solutions to the
coagulation equation for a rate coefficient of the form Aij ∝ (iµjν + iνjµ) and
monodisperse initial conditions. The results confirm that there are three classes
of rate coefficients with qualitatively different solutions. For ν � 1 and λ = µ +
ν � 1, the numerical solution evolves in an orderly fashion and tends towards a
self-similar solution at large time t. The properties of the numerical solution in
the scaling limit agree with the analytic predictions of van Dongen and Ernst.
In particular, for the subset with µ > 0 and λ < 1, we disagree with Krivitsky
and find that the scaling function approaches the analytically predicted power-
law behaviour at small mass, but in a damped oscillatory fashion that was not
known previously. For ν � 1 and λ > 1, the numerical solution tends towards
a self-similar solution as t approaches a finite time t0. The mass spectrum nk

develops at t0 a power-law tail nk ∝ k−τ at large masses that violates mass
conservation, and runaway growth/gelation is expected to start at tcrit = t0 in
the limit the initial number of particles n0 → ∞. The exponent τ is in general
less than the analytic prediction (λ + 3)/2, and t0 = K/[(λ − 1)n0A11] with
K = 1–2 if λ � 1.1. For ν > 1, the behaviours of the numerical solution are
similar to those found in a previous paper by us. They strongly suggest that
there are no self-consistent solutions at any time and that runaway growth is
instantaneous in the limit n0 → ∞. They also indicate that the time tcrit for the
onset of runaway growth decreases slowly towards zero with increasing n0.

PACS numbers: 02.60.Cb, 02.50.Ng, 02.70.NS, 45.50.−j

1. Introduction

Smoluchowski’s coagulation equation is the mean-rate equation that describes the evolution
of the mass spectrum of a collection of particles due to successive mergers. It is widely used
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for modelling growth in many fields of science. Examples include planetesimal accumulation,
mergers in dense clusters of stars, coalescence of interstellar dust grains and galaxy mergers
in astrophysics, aerosol coalescence in atmospheric physics, colloids and polymerization and
gelation (see, [1–5] and references therein).

If the masses of the particles are integral multiples of a minimum mass m1, the coagulation
equation is written in discrete form as

dnk

dt
= 1

2

∑
i+j=k

Aij ninj − nk

∞∑
i=1

Akini (1)

where nk is the number of particles of mass mk = km1 in a volume V and Aij is the rate
coefficient (or coagulation kernel) for mergers between particles of mass mi and mj

1. In
equation (1), it is assumed that the merging of two particles of mass mi and mj results in one
particle of mass mi + mj. The coagulation equation can also be written in continuous form as

dn(m)

dt
= 1

2

∫ m

0
dm′ Am′,m−m′ n(m′)n(m − m′) − n(m)

∫ ∞

0
dm′ Am,m′n(m′) (2)

where n (m) dm is the number of particles of mass between m and m + dm and Am,m′ is the rate
coefficient for mergers between particles of mass m and m′.

Examples of the rate coefficient Aij as a function of mi and mj (or equivalently i and j) that
arise in various problems can be found in the references cited above. Most rate coefficients used
in the literature are homogeneous functions of degree λ, i.e. Aai,aj = aλAij . The exponent λ

specifies the mass dependence of the probability of merger for two particles of comparable mass
(i ∼ j). It is also useful to classify Aij according to the exponents µ and ν for the merger between
a light particle and a heavy particle: Aij ∝ iµj ν for i � j and µ + ν = λ (see, e.g. [2]).
For example, Aij ∝ i + j has µ = 0, ν = 1, and λ = 1.

For a few simple rate coefficients and monodisperse initial conditions (i.e. n0 particles of
mass m1 at t = 0), there are exact analytic solutions to the discrete form of the coagulation
equation ([2, 6] and references therein). The analytic solutions for Aij ∝ constant and i + j
show orderly evolution of a smooth mass spectrum at all times and they agree with the results
from Monte Carlo simulations of the merger process in the limit n0 → ∞ (with n0/V fixed).
These two cases are examples of orderly growth. The analytic solution for Aij ∝ ij develops
a power-law tail with nk ∝ k−5/2 at large k as t ↑ t0 = 1/(n0A11). This power-law tail violates
mass conservation because it implies a nonzero mass flux to the infinite-mass bin. In this case,
the results from Monte Carlo simulations in the limit n0 → ∞ agree with the solution to the
coagulation equation at t � t0, but they show a transition from a smooth mass spectrum to a
smooth spectrum plus a massive runaway particle at t = t0 [7, 8]. The runaway particle (gel)
acquires a mass much larger than that of the other particles (sol) in the system and becomes
detached from the smooth mass spectrum of the rest of the particles at t > t0. This phenomenon
is known as runaway growth in the astrophysics literature and the transition is considered to
be the gelation transition in the studies of polymerization and gelation.

For most rate coefficients, there are no exact analytic solutions to the coagulation equation.
However, there are extensive analytic results on the asymptotic properties of the solutions for
Aij with ν � 1 (see, e.g. review in [2]). It is important to note that some of these analytic
results (such as the shape of the mass spectrum at small and large mass) are derived based
on assumptions (such as self-similar evolution) that have not been verified. Nevertheless, the

1 We can interpret nk as the concentration (i.e. the number of particles per unit volume) if we replace Aij by
A′

ij = V Aij .
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analytic results indicate that there are qualitatively two types of solutions to the coagulation
equation if ν � 1:

(1) if ν � 1 and λ � 1, the solution shows orderly growth at all times;
(2) if ν � 1 and λ > 1, the solution develops in finite time t0 a power-law tail at large masses

that violates mass conservation.

For Aij with essentially ν < 1, it has been proved that a solution to the coagulation equation
exists for all times (including t > t0 if λ > 1) and that the coagulation equation is the limit of
the finite system (whether or not the runaway particle and the other particles are allowed to
interact at t > t0 if λ > 1) [7, 9–11]. (For ν = 1 and λ > 1, we have the example Aij ∝ ij ,
where the coagulation equation needs to be modified for t > t0 if there is sol–gel interaction
[10, 12].)

Several authors have investigated the properties of the solutions to the coagulation equation
for Aij with ν > 1, using series expansion of the mass spectrum nk (t) about t = 0 and moments
of the mass spectrum [13–16]. The results suggest that:

(3) if ν > 1, there are no self-consistent solutions that conserve mass at any time.

An alternative to the analytic approach is to solve the coagulation equation numerically. In
[5], a numerical code that can yield accurate solutions to the discrete form of the coagulation
equation, equation (1), with a reasonable number of numerical mass bins, was developed.
The numerical code was used to study solutions to the coagulation equation for Aij that are
limiting cases for gravitational interaction. We considered the geometric or gravitational
focusing-dominated cross-section, mass-independent or equipartition velocity dispersion and
the power-law index of the mass-radius relation β = 1/3 (for planetesimals) or 2/3 (for stars).
For the two cases with geometric cross-section and β = 1/3, which have ν � 1 and λ � 1, the
mass spectrum evolves in an orderly fashion and tends towards a self-similar solution at large
time. For the remaining cases, which have ν > 1, the numerical mass spectrum shows, after
some evolution, an exponential drop in an intermediate mass range and a power-law tail of
the form nk ∝ k−ν (or n(m) ∝ m−ν) at large mass. This mass spectrum is not self-consistent
because the power-law tail implies a mass flux2 and, if 1 < ν � 2, a cumulative mass that
diverges with the maximum particle mass, mmax, included in the computational grid. The
time at which the power-law tail develops decreases towards zero as the numerical parameter
nmin decreases (see section 3 for the definition of nmin). Thus the numerical results strongly
suggest that there are no self-consistent solutions to the coagulation equation at any time if
ν > 1. We also considered a case with β = 0 as an example with ν � 1 and λ > 1, and
its mass spectrum develops a power-law tail that violates mass conservation in a finite time
t0. We discussed a simplified merger problem that illustrates the qualitative differences in
the solutions to the coagulation equation for the three classes of Aij . The results in [5] (and
the analytic results cited above) strongly suggest that there are two types of runaway growth.
For Aij with ν � 1 and λ > 1, runaway growth starts at a finite time tcrit = t0, the time
at which the coagulation equation solution begins to violate mass conservation, in the limit
n0 → ∞. For Aij with ν > 1, runaway growth is instantaneous in the limit n0 → ∞, and there
are indications (since decreasing nmin is similar to increasing n0) that the time tcrit, in units of

2 As we pointed out in [5], in these cases, a massive particle grows mainly by accumulating low-mass particles
because of the much larger number of low-mass particles. So the growth rate of a massive particle is
ṁ = ∫

dm′Am,m′ n(m′)m′ ∝ mν , since the integral is dominated by the range m′ � m. Hence nṁ at the high-mass
end of the mass spectrum is non-zero and independent of m if n ∝ m−ν . However, we did not point out that the mass
flux from the particles of mass m′ � m to particles of mass m′ > m is Fm ≈ mn(m)ṁ(m) +

∫ mmax
m dm′n(m′)ṁ(m′).

With nṁ independent of m, Fm ≈ nṁmmax, which is independent of m but increases with mmax. We have verified
this by an explicit evaluation of the mass flux (equation (12)) for the numerical solutions.
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1/(n0A11), for the onset of runaway growth decreases slowly towards zero with increasing
initial number of particles n0. Recent Monte Carlo simulations have shown that the time for
all particles to coalesce into a single particle decreases as the power of the logarithm of n0 if
ν > 1 ([17], see also [7, 18]).

The study in [5] focused on the rate coefficient for gravitational interaction and the range
of µ and ν studied was limited. In particular, µ was limited to 0 and ±1/2 and the region
µ > 0 and ν < 1 was not studied at all. Other authors have obtained numerical solutions
to the coagulation equation for rate coefficients that arise in specific problems. However, we
are not aware of any study that has systematically surveyed the properties of the numerical
solutions as a function of µ and ν (and λ) and compared them to the analytic results on the
asymptotic properties. For such a study, it is important that the numerical code used can
follow the evolution of the mass spectrum accurately for a long time. After the computation
for this paper was nearly complete, it came to our attention that Krivitsky [19] has obtained
numerical solutions to the continuous form of the coagulation equation, equation (2), for
Am,m′ ∝ (mm′)λ/2 (which has µ = ν = λ/2) and Am,m′ ∝ (m + m′)ν (which has µ = 0). For
Am,m′ ∝ (mm′)λ/2 with λ � 1, Krivitsky found that the numerical solutions are self-similar
at large times, but that unlike the analytic result, the asymptotic behaviour of the scaling
function at small masses is not a power law. As we shall see, the latter result is incorrect
because Krivitsky did not evolve the numerical solutions for a sufficiently long time to see
the true asymptotic behaviour at small masses. The scaling function does in fact approach
the analytically predicted power law at small masses, but in a damped oscillatory fashion that
was not known previously. It is unlikely that Krivitsky could have solved the coagulation
equation accurately for the necessary amount of time because the numerical code used by him
does not conserve mass. For Am,m′ ∝ (m + m′)ν with ν > 1, Krivitsky found that the mass
spectrum develops a slowly decreasing tail at a very small time. Only the numerical solution
for ν = 2 was shown. Its evolution is qualitatively similar to that found in [5] for ν > 1, but it
is not clear that the tail is power-law in nature because the maximum particle mass included
in Krivitsky’s computational grid is not large enough. It was also not demonstrated that the
numerical solution is not sensitive to other numerical parameters.

In this paper we present the results of a systematic survey of numerical solutions to the
coagulation equation. The purpose of this survey is (1) to confirm that there are three classes
of rate coefficients with qualitatively different solutions to the coagulation equation and that
the boundaries of these three classes are as stated above; (2) to investigate, in the cases where
self-consistent solutions exist, whether the solutions approach self-similar solutions as t → ∞
or t ↑ t0 and whether the scaling behaviours agree with the analytic results; (3) to study the
dependence of t0 on the exponents µ, ν and λ for the runaway growth cases with ν � 1 and
λ > 1; and (4) to investigate whether the behaviours of the numerical solutions found in [5]
for the cases with ν > 1 are valid in general. In section 2 we describe the rate coefficient
and the initial conditions used in this survey. In section 3 we provide a brief summary of
the numerical methods developed in [5] for solving the coagulation equation and additional
information on the accuracy of the numerical results. The results are presented in section 4
and the conclusions are summarized in section 5.

2. Rate coefficient and initial conditions

In this paper we consider a rate coefficient of the form

Aij = 1
2 (iµjν + iνjµ) (3)
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Figure 1. The exponents µ and ν of the cases for which we have obtained numerical solutions to
the discrete form of the coagulation equation with rate coefficient Aij = (iµjν + iνjµ)/2. The
orderly growth cases with ν � 1 and λ < 1 and on the borderline ν � 1 and λ = 1 are discussed in
sections 4.1 and 4.2 respectively. The runaway growth cases with ν � 1 and λ > 1 are discussed
in section 4.3 and those with ν > 1 are discussed in section 4.4.

with µ � ν. Note that Aai,aj = aµ+νAij and Aij ∝ iµj ν for i � j , consistent with the
definitions of the exponents µ, ν and λ = µ + ν in section 1. Since the rate coefficient in
equation (3) contains the exponents µ and ν as parameters explicitly, we can survey the entire
(µ, ν) space by varying µ and ν. This rate coefficient includes Aij = (ij)λ/2 (for µ = ν =
λ/2) and Aij = (iν + jν)/2 (for µ = 0), which have been used to model polymerization (e.g.
[14]), and the cases (µ, ν) = (1, 4/3) and (2, 2), which have been used to model planetesimal
accumulation and stellar merger [17]. It also has the nice property that it includes the three
cases with exact analytic solutions to the coagulation equation: Aij = 1, (i + j)/2, and ij for
(µ, ν) = (0, 0), (0, 1) and (1, 1) respectively.

We have obtained numerical solutions to the discrete form of the coagulation equation
for the cases shown in figure 1. The ranges of µ and ν considered contain most of the values
encountered in practical applications (but usually for other forms of Aij ). The numerical
solutions were computed for the monodisperse initial conditions with n0 particles of mass m1,
i.e. nk(t = 0) = n0δk1, where δk1 is the Kronecker delta. Hereafter, we adopt units such that
n0 = 1, m1 = 1, and A11 = 1. With this set of units, mk = k and time is in units of 1/(n0A11),
the timescale for every particle of mass m1 to merge with another particle of mass m1.

3. Numerical methods

In [5] we have developed a numerical code that can yield accurate solutions to the discrete
form of the coagulation equation (equation (1)) with a reasonable number of numerical mass
bins. A detailed description of the code can be found in [5]. In this section we provide a
brief summary of the algorithm and its numerical parameters. We also provide additional
information on the accuracy of the numerical results.
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Our numerical code uses a combination of linearly and logarithmically spaced numerical
mass bins. The first Nbd numerical mass bins are linearly spaced with m̃k = k. They have
boundaries m̃k±1/2 = k ± 1/2 and width �m̃k ≡ m̃k+1/2 − m̃k−1/2 = 1. The next Nbd × Ndec

numerical mass bins are logarithmically spaced, with Nbd bins per decade of mass; thus the kth
mass is m̃k = (m̃k+1/2 + m̃k−1/2)/2, with m̃k+1/2/m̃k−1/2 = 101/Nbd . There are in total Nmax =
(Ndec + 1)Nbd mass bins and the mass of the most massive particles in the computational
grid, mmax, is approximately Nbd10Ndec . Initially, the number of ‘active’ bins Nbin � Nmax.
At the end of each time step, Nbin is increased (if necessary) to include all bins with Nk >

nmin, where Nk is the total number of particles in bin k and nmin is a numerical parameter; it
is also increased if NNbin+1 becomes comparable to the power-law extrapolation from NNbin .
Before Nbin reaches Nmax, Nmax (or equivalently mmax) has no effect on the numerical results.
The numerical parameter nmin is specified in units of n0 and, e.g. nmin = 10−30 in units
of n0 is equivalent to nmin = 1 and n0 = 1030 in physical units. Thus the effect of the
numerical parameter nmin is similar to not allowing fractionally occupied numerical mass bins
to interact.

The fundamental quantity evolved by our numerical code is the total mass Mk in bin k.
During a time step, the code calculates for each combination of i and j (with i � j � Nbin)
the mass loss from bins i and j due to mergers between particles in those bins and distributes
the total mass of the merger products among the mass bins. Thus the code conserves mass
exactly. For i � j � Nbd, it is correct to assume that the merging particles have masses m̃i and
m̃j and that the merger products have mass m̃i + m̃j . For i � j and j > Nbd, we assume that
the particles in bin i have mass m̃i (which is exact for i � Nbd) and that the mass distribution
within bin j follows a power-law distribution

ρj (m) = cj (m/m̃j−1/2)qj for m̃j−1/2 < m � m̃j+1/2 (4)

where ρj(m) dm is the total mass of particles with mass between m and m + dm. The merger
products have masses between m̃i + m̃j−1/2 and m̃i + m̃j+1/2 and they are either added to a
single bin k (if m̃k−1/2 � m̃i + m̃j−1/2 and m̃i + m̃j+1/2 � m̃k+1/2) or distributed between bins k
and k + 1. In equation (4), the power-law index qj is obtained from the masses in the adjacent
bins,

qj =
log

(
Mj+1

�m̃j+1

/
Mj−1

�m̃j−1

)

log
(
m̃j+1/m̃j−1

) (5)

and the normalization constant cj from the constraint∫ m̃j+1/2

m̃j−1/2

dm ρj (m) = Mj . (6)

Our numerical code uses the second-order Runge–Kutta method with a variable time step.
The time step is continuously adjusted so that the fractional change of each Mk per time step
is less than δM and the mass loss from bin k does not exceed Mk.

In [5] we have compared in detail the numerical solutions from our code to the exact
analytic solutions for Aij = 1, (i + j)/2, and ij , with the last case at t < t0 only. The accuracy
of the numerical solutions is extremely insensitive to δM and nmin and improves rapidly with
increasing Nbd. Hereafter, unless stated otherwise, the numerical results were obtained using
δM = 5%, nmin = 10−30 (in units of n0) and Nbd = 40.

We report here several additional tests of our code. Ziff has constructed three forms of
rate coefficients, with a parameter γ , for which a single moment Mγ (t) = ∑∞

k=1 m
γ

k nk(t)

of the mass spectrum nk(t) can be calculated analytically [21]. We have obtained numerical
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solutions for a few of these rate coefficients (including both orderly and runaway growth
cases) and have confirmed that the numerical results for the moment Mγ (t) agree with the
analytic results, with accuracy similar to what was found for the three cases with exact analytic
solutions.

In section 4.3 we will be interested in extending the calculations for some of the runaway
growth cases with ν � 1 and λ > 1 to t > t0. Therefore, another test that we have performed
is to extend the comparison for the case Aij = ij to t > t0. For Aij = ij , the evolution of the
mass spectrum at t > t0 depends on whether or not the runaway particle (gel) and the other
particles (sol) interact. The (unmodified) coagulation equation is valid if there is no sol–gel
interaction and it has an exact analytic solution with nk(t) ∝ t−1k−5/2 at large k for all t > t0
[9, 12]. (The coagulation equation can be modified to take into account the sol–gel interaction
and an exact analytic solution also exists for this modified coagulation equation [12].) Since
our code does not take into account the sol–gel interaction and does not allow merger products
with masses greater than mmax to interact, we expect the numerical solution at t > t0 to agree
with the analytic solution to the unmodified coagulation equation, except for mk ∼ mmax. We
have integrated the case Aij = ij up to t = 1.25 and have found that the numerical solution at
t > t0 = 1 is in excellent agreement with the analytic solution for mk � 0.01 mmax.

A quantity that is discussed extensively in section 4 is the logarithmic slope d ln n/d ln m
of the mass spectrum. For the numerical results, we use

d ln n/d ln m (m̃k) = qk − 1 (7)

where qk is defined in equation (5). Equation (7) is consistent with the power-law
approximation used by the code since under this approximation the number distribution of
particles within the numerical mass bin k is nk(m) = ρk(m)/m ∝ mqk−1.

To determine the accuracy of the numerical results for d ln n/d ln m, we compare the
numerical and analytic results for the three cases with exact analytic solutions. The analytic
solutions are of the form n ∝ m−τ exp[−b(t) m] or d ln n/d ln m = −τ − b(t)m for m � 1,
where τ = 0, 3/2, and 5/2 for Aij = 1, (i + j)/2, and ij , respectively. Thus n ∝ m−τ or d ln n/

d ln m = −τ for 1 � m � m∗ when the characteristic mass m∗(t) defined in equation (9) is
large. In figure 2(a) we show for each case the numerical and analytic d ln n/d ln m at m �
m∗(t) at a given time. As we noted in [5], there is a small lag in the evolution of the numerical
solutions for Aij = (i + j)/2 and ij . Therefore, in these cases, the numerical results are
compared to the analytic results at a slightly earlier time. There are fluctuations in the numerical
results in the first decade of the logarithmically spaced mass bins (1 � m/Nbd � 10) due to the
discreteness of the mass bins, but the fluctuations are �0.015. The numerical results are much
smoother and much more accurate outside this mass range. We can see from figure 2(a) that τ

can be determined from the numerical results at 1 � m � m∗ to better than ±0.001.
Figure 2(b) is similar to figure 2(a), but it shows the mass range m � m∗(t). The

differences between the analytic results, which decrease linearly with mass, and the numerical
results are small, but there is a small curvature in the numerical results, and they become
increasingly higher than the analytic results with increasing mass. (This is consistent with
the observation in [5] that the numerical solutions show a slightly slower exponential decay
at the high-mass end of the mass spectrum.) As a result, if we fit the numerical results near
d ln n/d ln m = −20 (or −30) to a straight line d ln n/d ln m = −θ − bm, the resulting
values for θ are greater than the correct values (which are τ as given above) by 0.13–0.15
(or 0.29–0.36). This is the accuracy to which we can check whether a numerical solution is
consistent with d ln n/d ln m = −θ − bm and a given θ at m � m∗.

In [5] we have discussed our numerical code in the context of numerical codes in the
astrophysics literature. Other recent numerical codes include those by Krivitsky, Hill and Ng
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Figure 2. (a) Comparison of numerical (solid lines) and analytic (dotted lines) results for
d ln n/d ln m at m � m∗(t). The lines, from top to bottom, are d ln n/d ln m + C for Aij = 1 at t =
108, Aij = (i +j)/2 at t = 18, and Aij = ij at t = 1; the constant C = 0, 1.45, and 2.4 respectively.
For Aij = (i + j)/2 and ij , there is a small lag in the evolution of the numerical solutions and
the numerical results are compared to the analytic results at a slightly earlier time (1 − ε) t, where
ε = 3.5 × 10−4 and 1.1 × 10−4 respectively. (b) Same as (a), but at m � m∗(t). The lines, in
decreasing steepness, are d ln n/d ln m for Aij = 1 at t = 108, Aij = (i + j)/2 at t = 18, and
Aij = ij at t = 1.

and Tzivion et al [19, 20, 21]. As we mentioned in section 1, the numerical code used by
Krivitsky does not conserve mass and would have difficulty following the evolution of the
mass spectrum accurately for a long time. The numerical code described by Hill and Ng
conserves mass but uses a relatively simple algorithm for distributing merger products. We in
fact tried a similar algorithm for distributing merger products [23] before we developed the
algorithm based on the power-law approximation and found that the high-mass end of the mass
spectrum converges very slowly with increasing grid resolution (Nbd) if the rate coefficient
increases steeply with the mass of the particles (i.e. if ν and/or λ is large). Tzivion et al have
developed a mass-conserving numerical code that evolves separately the total number (Nk) and
mass (Mk) of particles in a numerical mass bin k. The numerical solutions obtained using this
code appear to converge rapidly with increasing grid resolution for the case Am,m′ ∝ m + m′,
but there was no demonstration that this is also true for rate coefficients with steeper mass
dependence.
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Figure 3. Evolution of the mass spectrum for (µ, ν) = (1/3, 1/3). We plot log m2n as a function
of log m since m2n is the total mass per unit logarithmic mass interval:

∫
m2n d ln m = ∫

mn dm.

4. Results

In this section we present the numerical solutions to the discrete form of the coagulation
equation for the rate coefficient and initial conditions described in section 2 (see also figure 1).
For the cases with ν � 1 (sections 4.1–4.3), whenever possible, we compare the properties
of the numerical solutions to the predictions from self-similar analysis. Hereafter, unless
otherwise stated, the self-similar analysis results cited can be found in van Dongen and Ernst
[24, 25].

4.1. Orderly growth cases with ν � 1 and λ < 1

An example of the numerical results for the mass spectrum evolution for ν � 1 and λ < 1
is shown in figure 33. In this and all other cases with ν � 1 and λ < 1, the mass spectrum
evolves in an orderly fashion. For these cases, we stopped the numerical integrations when
the asymptotic behaviours of the solutions were clear and before Nbin reached Nmax.

For orderly growth with ν � 1 and λ < 1, self-similar analysis predicts that self-similar
solutions have the form

nk(t) = m∗(t)−2ϕ[mk/m∗(t)] (8)

where ϕ(x) is a scaling function and the characteristic mass m∗(t) scales as t1/(1−λ). Different
definitions of m∗(t), which correspond to different scales for x = mk/m∗(t) and ϕ(x) can be
used. We adopt

m∗(t) = M3(t)/M2(t) (9)

where M&(t) ≡ ∑∞
k=1 m&

knk(t) is the &th moment of the mass spectrum. This choice of m∗ is
convenient because it can also be used for runaway growth with ν � 1 and λ > 1 (section 4.3).

In all cases, the numerical solution tends towards a self-similar solution of the form (8)
at large t. This is illustrated in figure 4, where we plot the numerical solution at three
different times in the form of log m2n as a function of log m/m∗ for the case shown
in figure 3. In the scaling limit (8), m2n = x2ϕ(x). We have evaluated the exponent
3 In figure 3 and all subsequent figures, the numerical mass spectrum plotted is n(m̃k) = Nk for k � Nbd and
n(m̃k) = nk(m̃k) for k > Nbd .
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Figure 4. Approach to self-similar solution as t → ∞ for (µ, ν) = (1/3, 1/3). The numerical
solution is plotted for t = 103 (solid line), 104 (dashed line) and 105 (dotted line) in the form of
log m2n as a function of log m/m∗.

z(ti) = ln[m∗(ti+1)/m∗(ti−1)]/ ln(ti+1/ti−1) from the numerical results for m∗(t) at output
times ti−1, ti and ti+1 for all cases with ν � 1 and λ < 1. In all but two cases, the exponent z

at large t agrees with 1/(1 − λ) to better than one part in 1.5 × 103. For the two cases with
(µ, ν) = (1/6, 2/3) and (1/3, 1/2), the agreement between the numerical results at the end of
the numerical runs, z = 5.985 and 5.963, and the analytic result, 1/(1 − λ) = 6, is slightly
worse, but the numerically determined exponents still slowly increase with time at the end
of the numerical runs, indicating that the numerical results have not completely reached the
asymptotic regime.

Figure 5 shows the numerical results for the scaling function ϕ(x) for all cases with ν � 1
and λ < 1. The location of the peak of x2ϕ is not very sensitive to µ or ν, and it is at x =
0.33–0.71. Self-similar analysis predicts that the scaling function ϕ(x) decays exponentially
at large x. For ν < 1, ϕ(x) ∝ x−θ exp(− bx) or d ln ϕ/d ln x = −θ − bx, with θ = λ, at large
x. The detailed behaviour of ϕ(x) at large x for ν = 1 depends on the specific form of Aij . For
Aij in equation (3) with ν = 1, the large-x behaviour of ϕ(x) is similar to that for ν < 1, but
θ = (µ + 3)/2 if −1 � µ < 0 ([26], see also [15]). In all cases, the numerical ϕ(x) decays
exponentially at large x, and d ln ϕ/d ln x at large x is consistent with the analytic result (see
section 3 for a discussion of the accuracy of the numerical results at large x).

The behaviour of the scaling function ϕ(x) at small x is qualitatively different for µ < 0,
µ = 0, and µ > 0. For the cases with µ < 0 (figure 5(a)), ϕ(x) also decays exponentially at
small x because light particles are rapidly accreted by heavy particles. Self-similar analysis
predicts that ϕ(x) ∝ x−a exp(bxµ/µ) or d ln ϕ/d ln x = −a + bxµ at small x, where a and b
are constants that depend on the specific form of Aij . For Aij in equation (3), a = 2 if ν > 0
and a = 1 if ν = 0. In figure 6, we plot the numerical results for d ln ϕ/d ln x as a function
of xµ for the cases with µ = −1/6 to show that the numerical results indeed have the form
d ln ϕ/d ln x = −a + bxµ at large xµ (or small x). Furthermore, in all cases with µ < 0, the
value of a from least-squares fit is in agreement with the analytic result to better than ±0.004.

For the cases with µ = 0, i.e. Aij = (iν + jν)/2, the scaling function shows a power-law
behaviour ϕ(x) ∝ x−τ at small x (figure 5(b)). The numerical results for the exponent τ are
0.000, 1.001, 1.033, 1.109, 1.216, 1.347, and 1.500 for ν = 0, 1/6, 1/3, 1/2, 2/3, 5/6, and 1,
respectively. Self-similar analysis gives τ = 2−pλ/w, where pλ and w depend on the specific
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Figure 5. (a) Scaling function ϕ(x) for the cases with µ < 0 and ν � 1. The solid (dotted) lines in
increasing width are for µ = −1/2 (−1/6) and ν = 0, 1/3, 2/3, 1. (b) ϕ(x) for the cases with µ =
0 and ν � 1. The solid lines in increasing width are for ν = 0, 1/6, . . . , 1. (c) ϕ(x) for the cases
with µ > 0 and λ < 1. The solid lines in increasing width are for µ = 1/6 and ν = 1/6, 1/3, 1/2,
2/3. The dotted lines, offset vertically by −10, are for µ = 1/3 and ν = 1/3 and 1/2.
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Figure 6. Logarithmic slope d ln ϕ/d ln x as a function of xµ for the cases with µ = −1/6 and ν =
0, 1/3, 2/3, 1 (solid lines from top to bottom). The dotted lines are the asymptotes approached by
the numerical results at large xµ (or small x).

Figure 7. Logarithmic slope d ln ϕ/d ln x for the cases with µ = 1/6 and ν = 1/6, 1/3, 1/2, 2/3
(solid lines from top to bottom). The dashed lines show the leading small-x behaviour predicted
by self-similar analysis: d ln ϕ/d ln x = −(1 + λ).

form of Aij . van Dongen and Ernst [27] have used this expression to derive analytic lower
and upper bounds on τ for Aij = (iν + jν)/2. Our numerical results are consistent with
these bounds. Note that the exponent τ is discontinuous at ν = 0: τ decreases from 1.5 at
ν = 1 to 1 as ν ↓ 0, but τ = 0 at ν = 0 (recall that the ν = 0 and ν = 1 cases have exact
analytic solutions). In contrast, for Aij ∝ (i + j)ν (which also has µ = 0), the exponent τ

decreases smoothly from 1.5 at ν = 1 to 0 at ν = 0 [19, 28].
For the cases with µ > 0 (figure 5(c)), the scaling function ϕ(x) oscillates around a power

law at small x, with the fractional amplitude of the oscillation decreasing as x → 0. This
damped oscillatory approach to a power law is shown more clearly in figure 7, where we plot
the logarithmic slope d ln ϕ/d ln x as a function of log x for the cases with µ = 1/6. In all cases,
the logarithmic slope tends to a constant value as x → 0, and the asymptotic value is consistent
with the leading small-x behaviour predicted by self-similar analysis: ϕ(x) ∝ x−(1+λ) or
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d ln ϕ/d ln x = −(1 + λ). The oscillation appears to be periodic in the variable ln x, but it
is difficult to determine this accurately because of the limited number of cycles seen in our
numerical results.

The damped oscillatory behaviour at small x for µ > 0 and λ < 1 was not known
previously. In their self-similar analysis, van Dongen and Ernst [25] were unable to find
higher order corrections to the leading small-x behaviour of ϕ(x) for µ > 0 and λ < 1,
and they raised the possibility that physically acceptable self-similar solutions may not exist.
As we have just shown, there are indeed physically acceptable self-similar solutions and
they are reached from monodisperse initial conditions. Based on our numerical results,
we suggest that the leading small-x behaviour and the first correction could be of the form
ϕ(x) ∝ x−(1+λ)[1 + f (x) cos(B ln x + C)], where f (x ) is an increasing function of x, possibly
Axα with α > 0. The failure to find the first correction in the self-similar analysis is probably
due to the unusual form of this correction.

As we mentioned in section 1, Krivitsky has obtained numerical solutions to the continuous
form of the coagulation equation for Am,m′ ∝ (mm′)λ/2 with λ � 1 [19]. Krivitsky concluded
that the numerical solutions are self-similar at large times but that the asymptotic behaviour at
small masses is not a power law. The latter conclusion is different from ours and, we believe,
incorrect. We can understand why Krivitsky reached this conclusion by examining figure 5(b)
of [19], where the numerical results for d ln n/d ln m are shown for the case λ = 0.4. By
the last time shown, the numerical results have converged to a self-similar form for x � 10−4,
and the logarithmic slope indeed decreases with decreasing x over the range 10−4 � x � 10−1.
However, as we can see from our figure 7, over this range in x, d ln ϕ/d ln x in fact decreases
from a maximum to a minimum in its oscillatory approach to a constant value. Therefore, the
incorrect conclusion was reached because Krivitsky did not evolve the numerical solutions for
a sufficiently long time to see the true asymptotic behaviour at small mass.

4.2. Orderly growth cases with ν � 1 and λ = 1

On the borderline λ = 1 and ν � 1, the numerical mass spectrum evolves in an orderly fashion,
but with the characteristic mass m∗(t) increasing exponentially with time. For these cases, we
set Ndec = 19 and stopped the numerical integrations as soon as Nbin reached Nmax, i.e. when
the mass spectra extended over 20 decades in mass.

We distinguish the cases with µ = 0 and µ > 0. As we discussed above, the case µ = 0
is Aij = (i + j)/2 with exact analytic solution and the numerical solution for this case is in
excellent agreement with the analytic solution (see section 3 and figures 2 and 5(b)). The
mass spectrum tends towards a self-similar solution of the form (8) at large t, with m∗(t) ∝ et

(see figure 8) and the scaling function ϕ(x) ∝ x−3/2 at small x and ∝ x−θ exp(−bx) with θ =
(µ + 3)/2 = 3/2 at large x.

For µ > 0, van Dongen and Ernst have derived a modified self-similar solution [25]:

nk(t) = (m2
∗ ln m∗)−1ϕ(mk/m∗) (10)

where (ln m∗)2 = a + bt and a and b are constants. The scaling function ϕ(x) is predicted to
scale as x−2 at small x and x−1 exp(−bx) at large x.

The numerical results for m∗(t) for the three cases with µ > 0 (and also the case µ =
0) are shown in figure 8. In each case, we have fitted the numerical results at the last two
output times to ln m∗ = a + bt and (ln m∗)2 = a + bt , and they are shown as dotted and
solid lines respectively. For (µ, ν) = (1/2, 1/2), (ln m∗)2 = a + bt provides a reasonably
good fit to the numerical results at large t. For (µ, ν) = (1/3, 2/3) and, in particular,
(1/6, 5/6), the numerical results at large t show deviations from (ln m∗)2 = a + bt . The
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Figure 8. Characteristic mass m∗(t) for the cases with λ = 1 and ν � 1. The points, from left
to right, are the numerical results for µ = 0, 1/6, 1/3, and 1/2. The dotted and solid lines show
ln m∗ = a + bt and (ln m∗)2 = a + bt fitted to numerical results at the last two output times.

Figure 9. Logarithmic slope d ln n/d ln m for the cases with µ > 0 and λ = 1. The top lines are
the numerical results for (µ, ν) = (1/6, 5/6) at t = 47 (solid line), 54 (dashed line), and 61 (dotted
line), offset vertically by C = 1. The middle lines are for (µ, ν) = (1/3, 2/3) at t = 63, 74, and 87,
with C = 0.5, and the bottom lines are for (µ, ν) = (1/2, 1/2) at t = 71, 86, and 102, with C = 0.

deviations in the last two cases are probably due to the numerical results not having completely
reached the asymptotic regime, but we cannot rule out the possibility that the asymptotic
behaviour is different from the analytic prediction.

If a numerical solution approaches the self-similar solution (10), we expect m2n ln m∗ →
x2ϕ(x) and d ln n/d ln m → d ln ϕ/d ln x. In figure 9 we show d ln n/d ln m as a function of
log m/m∗ at three different times for all cases with µ > 0 and λ = 1. For (µ, ν) = (1/2, 1/2),
d ln n/d ln m has converged to d ln ϕ/d ln x at x = m/m∗ � 10−5, but the convergence at
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Figure 10. Evolution of the mass spectrum for (µ, ν) = (1/3, 1) at t � t0 (solid lines) and t > t0
(dashed lines).

x � 10−5 is very slow and is not complete by the end of the numerical run. The range of x
over which d ln n/d ln m has converged by the end of the numerical run is wider for smaller µ.
(A similar analysis of m2n ln m∗ reveals a small increase in the normalization of m2n ln m∗ with
time in the range of x where d ln n/d ln m has converged. This increase is more pronounced for
smaller µ and is probably due to m∗ not having completely reached the asymptotic regime.)
For (µ, ν) = (1/6, 5/6), it is reasonably clear that d ln ϕ/d ln x → −2 in the small-x limit,
consistent with the analytic prediction. For (µ, ν) = (1/3, 2/3) and (1/2, 1/2), the small-x
behaviours are less certain because of the slow convergence at small x, but they also appear to
be consistent with the analytic prediction. Finally, in all three cases, the large-x behaviour of
the numerical d ln ϕ/d ln x is consistent with the analytic prediction that d ln ϕ/d ln x =−1 − bx.

4.3. Runaway growth cases with ν � 1 and λ > 1

In all cases with ν � 1 and λ > 1, the numerical mass spectrum develops in a finite time t0 a
power-law tail, nk ∝ k−τ , at large masses that violates mass conservation and runaway growth
is expected to start at tcrit = t0 in the limit n0 → ∞. For most cases with ν � 1 and λ > 1,
we stopped the numerical integrations as soon as Nbin reached Nmax and the mass spectra
extended over 20 decades in mass; so the numerical solutions approach very close to but do
not exceed t0. To study the transition at t = t0, we extended the integrations for the cases (µ,ν) =
(1/3, 1) and (2/3, 2/3) to t > t0. Figure 10 shows the numerical results for the mass spectrum
evolution for the case (µ, ν) = (1/3, 1) at t � t0 (solid lines) and t > t0 (dashed lines).

For runaway growth with ν � 1 and λ > 1, self-similar analysis predicts that self-similar
solutions close to but before t0 have the form

nk(t) = m∗(t)−τ ϕ[mk/m∗(t)] (11)

where the scaling function ϕ(x) ∝ x−τ at small x, the characteristic mass m∗(t) diverges as
(t0 − t)−1/σ , and σ = λ + 1 − τ . With m∗(t) diverging at t0, the self-similar solution (11)
has nk(t0) ∝ k−τ at large k. In all cases, the numerical solution tends towards a self-similar
solution of the form (11) as t ↑ t0 and the numerical ϕ(x) is indeed a power law at small x.
This is illustrated in figure 11, where we plot the numerical solution at three different times
(<t0) in the form of log(m2n mτ−2

∗ ) as a function of log m/m∗ for the case shown in figure 10,
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Figure 11. Approach to self-similar solution as t ↑ t0 for (µ, ν) = (1/3, 1). The numerical solution
is plotted for t = 3.73 (solid line), 3.74 (dashed line), and 3.7409 (dotted line) in the form of
log(m2n mτ−2∗ ) as a function of log m/m∗.

Table 1. Runaway growth cases with ν � 1 and λ > 1.

λ µ ν τ σ λ + 1 − τ n0A11t0

7/6 1/6 1 2.012 0.154 0.155 7.136
7/6 1/3 5/6 2.038 0.128 0.129 9.146
7/6 1/2 2/3 2.054 0.112 0.113 10.633
7/6 7/12 7/12 2.057 0.110 0.110 10.855
4/3 1/3 1 2.076 0.257 0.257 3.741
4/3 1/2 5/6 2.103 0.230 0.230 4.284
4/3 2/3 2/3 2.112 0.221 0.221 4.492
3/2 1/2 1 2.166 0.334 0.334 2.451
3/2 2/3 5/6 2.184 0.316 0.316 2.639
3/2 3/4 3/4 2.186 0.314 0.314 2.664
5/3 2/3 1 2.269 0.398 0.398 1.750
5/3 5/6 5/6 2.276 0.390 0.391 1.808

11/6 5/6 1 2.380 0.453 0.453 1.307
11/6 11/12 11/12 2.381 0.451 0.452 1.317
2 1 1 2.500 0.500 0.500 1.000

with the exponent τ determined from the numerical solution itself (see table 1 and discussion
below). In the scaling limit (11), m2n mτ−2

∗ = x2ϕ(x).
Despite the change in the form of the self-similar solution, the analytic predictions for

the large-x behaviour of ϕ(x) are similar to those for orderly growth in sections 4.1 and 4.2:
ϕ(x) ∝ x−θ exp(−bx) or d ln ϕ/d ln x = −θ − bx, where θ = λ if ν < 1, θ = (µ + 3)/2 if
ν = 1 and 0 < µ < 1, and θ = 5/2 if ν = µ = 1. In all cases, the numerical ϕ(x) decays
exponentially at large x and d ln ϕ/d ln x at large x is consistent with the analytic result.

The analytic predictions for the exponents τ and σ are τ = (λ + 3)/2 and σ = λ + 1 − τ =
(λ − 1)/2 [14, 24, 25]. For comparison, we have determined τ and σ from the numerical
results for d ln ϕ/d ln x and m∗(t) respectively. In figure 12 we show the numerical results for
d ln ϕ/d ln x for the cases with λ = 4/3. The numerical results clearly converge to constant
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Figure 12. Logarithmic slope d ln ϕ/d ln x for the cases with λ = 4/3. The solid lines from top to
bottom are the numerical results for (µ, ν) = (1/3, 1), (1/2, 5/6), and (2/3, 2/3), and the dashed
line is the analytic prediction for the small-x behaviour: d ln ϕ/d ln x = −τ = −(λ + 3)/2 =
−13/6.

values at small x. The constant asymptotic values are consistent with ϕ(x) ∝ x−τ or d ln ϕ/

d ln x = −τ at small x and directly yield the values of τ . It is also clear from figure 12 that
the asymptotic values and hence τ for these cases with the same λ(=4/3) are different from
each other and from the analytic prediction that d ln ϕ/d ln x = −τ = −(λ + 3)/2 = −13/6
(dashed line in figure 12). The numerical results for the exponent τ for all cases with ν � 1
and λ > 1 are listed in table 1. The only case where the exponent τ agrees with the analytic
prediction (λ + 3)/2 is the case ν = µ = 1 (i.e. the case Aij = ij with exact analytic solution).
In all other cases, the exponent τ is less than (λ + 3)/2. For a given λ, the deviation of τ from
(λ + 3)/2 is largest for ν = 1 and smallest for ν = µ.

To determine the exponent σ , we fit the numerical results for m∗(t) at output times ti−1,
ti, and ti+1 to m∗(t) = C(t ′

0 − t)−1/σ ′
to obtain C(ti), t ′

0(ti ) and σ ′(ti). In most cases, σ ′(t) has
converged to a constant value by the end of the numerical run and directly yields σ . In the
remaining cases, we extrapolated σ ′(t) to the limit m∗(t) → ∞ to obtain σ , but the difference
between σ ′(t) at the end of the numerical run and σ is � 0.002. The numerical results for
the exponent σ are listed in table 1, together with λ + 1 − τ . Except for the case ν = µ = 1, the
exponent σ is greater than the analytic prediction (λ − 1)/2. For a given λ, the deviation of σ

from (λ − 1)/2 is largest for ν = 1 and smallest for ν = µ. We note that the numerical results
for σ and τ are consistent with one another in that they satisfy the relation σ = λ + 1 − τ

for self-similar solutions of the form (11) to within ±0.001.
The procedure described above for determining the exponent σ also yields the time t0.

The numerical results for t0, in units of 1/(n0A11), are listed in table 1. Since we expect
t0 ∼ 1/[(λ − 1)n0A11] (see [5]), it is convenient to parameterize t0 as t0 = K/[(λ − 1)n0A11].
The parameter K is shown in figure 13. We find that K = 1–2 if λ � 1.1 and that, for a given λ,
K is smallest for ν = 1 and largest for ν = µ. For ν = 1, the parameter K shows a maximum
at λ ≈ 1.3. For ν = µ, K increases monotonically with decreasing λ, but it is unclear whether
K approaches a constant value or diverges as λ → 1. Finally, we note that the numerical
results for t0 are consistent with the bound t0 � 1/[(λ − 1)n0A11] for Aij in equation (3) and
monodisperse initial conditions and the stronger bound t0 � 1

/ [
(2λ−1 − 1)n0A11

]
for ν = µ,

derived analytically by Hendriks et al [14].
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Figure 13. Parameter K = (λ − 1)n0A11t0 for the cases with ν � 1 and λ > 1 listed in table 1.
The cases with ν = 1 and ν = µ are represented by squares and triangles, respectively, and the
remaining cases are represented by crosses.

We have found that the exponents τ and σ are, in general, different from the analytic
predictions. Since the analytic prediction for σ follows from that for τ and the relation σ =
λ + 1 − τ for self-similar solutions of the form (11), and the numerical results for σ and τ

satisfy this relation, we have essentially a discrepancy in the exponent τ . Let us examine the
derivation of the analytic prediction for τ , which can be summarized as follows ([14, 24, 25]
for details). The mass flux from particles of mass mi � mk to particles of mass mi > mk is

Fk(t) =
k∑

i=1

∞∑
j=k+1−i

miAij ni(t)nj (t). (12)

It is assumed that solutions to the coagulation equation at t > t0 violate mass conservation by
having a non-zero and finite mass flux to the infinite-mass bin (i.e. in the limit k → ∞), which
is possible only if the mass spectrum at t > t0 is of the form nk(t) ∝ k−τ ′

at large k. With
nk(t) ∝ k−τ ′

at large k, the mass flux Fk(t) ∝ kλ+3−2τ ′
at large k. Thus τ ′ = (λ + 3)/2 if the

mass flux Fk (t) is required to be non-zero and finite in the limit k → ∞. Since the self-similar
solution (11) has nk(t0) ∝ k−τ at large k, τ = τ ′ = (λ + 3)/2 if we assume that the large-k
behaviour at t > t0 is also valid at t = t0. It should be noted that the arguments leading to τ =
(λ + 3)/2 are not rigorous. In particular, as van Dongen and Ernst pointed out [25], one cannot
exclude the possibility that the mass flux diverges at one instant of time, i.e. t0. We have found
that τ < (λ + 3)/2 in general. This implies that the mass flux Fk at t0, which is ∝ kλ+3−2τ at
large k, diverges as k → ∞. Thus the numerical solutions violate mass conservation at t0 by
having a diverging mass flux to the infinite-mass bin.

Since the mass flux cannot diverge for all times t > t0, do the solutions at t > t0 have
the form nk(t) ∝ k−(λ+3)/2 at large k for non-zero and finite mass flux to the infinite-mass
bin? If so, how can this large-k behaviour at t > t0 be reconciled with that at t = t0? To
answer these questions, we have extended the numerical integrations for the cases (µ, ν) =
(1/3, 1) and (2/3, 2/3) to t > t0. The results for the mass spectrum evolution at t > t0
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for the case (µ, ν) = (1/3, 1) are shown as dashed lines in figure 10. As in the test
case Aij = ij discussed in section 3, the numerical solution at mk ∼ mmax is affected by
the finite value of the maximum particle mass, mmax, in the computational grid. Otherwise,
the mass spectrum at t > t0 is indeed of the form nk(t) ∝ k−(λ+3)/2 at large k, with the
value of the exponent confirmed by an analysis of the logarithmic slope. Note, however,
that the range of k where nk(t) ∝ k−(λ+3)/2 shrinks towards infinity as t ↓ t0. The numerical
solution for the case (µ, ν) = (2/3, 2/3) shows the same large-k behaviours at t > t0.
Therefore, we conclude that the transition at t = t0 is accomplished as follows. As t ↑ t0,
the solution tends towards a self-similar solution of the form (11), with nk(t) ∝ k−τ for
1 � mk � m∗(t), τ < (λ + 3)/2 in general, and m∗(t) → ∞. As t ↓ t0, nk(t) ∝ k−(λ+3)/2 for
mk � m′

∗(t) and m′
∗(t) → ∞.

4.4. Runaway growth cases with ν > 1

Examples of the numerical results for the mass spectrum evolution with nmin = 10−30 (solid
lines) and 10−35 (dotted lines) for ν > 1 are shown in the lower panels of figure 14. In
all cases with ν = 2 and 3/2 and the three cases with ν = 7/6 and µ � 0 (see, e.g.
figure 14(a)), the behaviours of the numerical solutions for both nmin = 10−30 and 10−35

are qualitatively similar to those found in [5] for other forms of Aij with ν > 1. In the
early stages, the mass spectrum appears to decay exponentially at a large mass. After
some evolution, the mass spectrum shows an exponential drop in an intermediate mass
range and a power-law tail of the form nk ∝ k−ν (or n ∝ m−ν ) at large masses. For
the three cases with ν = 7/6 and µ � 1/3, the numerical solutions with nmin = 10−30

do not develop the m−ν tail when Nbin reaches Nmax (see, e.g. figure 14(b)), and their
behaviours are qualitatively similar to those for the runaway growth cases with ν � 1
and λ > 1 (section 4.3; figure 10). When nmin is decreased to 10−35, the µ = 1/3 case
does develop an m−ν tail when Nbin reaches Nmax (figure 14(b)), but the other two cases
do not. It is not feasible to compute solutions for much smaller nmin, but we strongly
suspect that the remaining two cases would develop the m−ν tail for sufficiently small nmin.

The fact that the tail at large masses is of the form n ∝ m−ν or d ln n/d ln m = −ν is
illustrated in the upper part of figure 14, where the numerical results for d ln n/d ln m are
plotted at the specified times, just after the formation of the tail for the runs with nmin = 10−35.
As found in [5], the time at which the power-law tail develops decreases slowly towards zero
as nmin decreases (lower part of figure 14). We do not repeat the demonstrations here, but
it was shown in [5] that numerical solutions with different maximum particle mass, mmax,
included in the computational grid are identical in the overlapping mass range and that the
power-law tail simply extends to a larger particle masses when mmax is increased. (It was also
shown that the numerical solutions converge by Nbd = 40 and δM = 5%.) Therefore, in the
limit nmin → 0 and mmax → ∞, the numerical solutions for all cases with ν > 1 (with the
possible exception of the cases with ν = 7/6 and µ > 1/3) should develop in an infinitesimal
time power-law tails of the form n ∝ m−ν that extend to arbitrarily large mmax. However, this
mass spectrum is not self-consistent because the power-law tail implies a mass flux and, if
1 < ν � 2, a cumulative mass that diverges with mmax (see footnote 2 and [5]). Thus, as in
[5], the numerical results strongly suggest that there are no self-consistent solutions to the
coagulation equation at any time if ν > 1. Furthermore, since the formation of the power-law
tail in the coagulation equation solution with finite nmin probably corresponds to the onset of
runaway growth in Monte Carlo simulations with finite n0 (see [5]) and decreasing nmin is
equivalent to increasing n0 (see section 3), the time tcrit for the onset of runaway growth for
ν > 1 should decrease slowly towards zero with increasing n0.
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Figure 14. Evolution of the mass spectrum (lower panels) and logarithmic slope d ln n/d ln m at
the specified time (upper panels) for µ = 1/3 and ν equal to (a) 2 and (b) 7/6. The numerical
solutions with nmin = 10−30 (solid lines) and 10−35 (dotted lines) are shown. In the upper panels,
the dashed lines indicate d ln n/d ln m = −ν.
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5. Conclusions

We have conducted a systematic survey of numerical solutions to the coagulation equation (1)
for a rate coefficient of the form Aij ∝ (iµjν + iνjµ) and monodisperse initial conditions. The
numerical results confirmed that there are three classes of rate coefficients with qualitatively
different solutions to the coagulation equation.

For ν � 1 and λ = µ + ν < 1 (section 4.1), the numerical solution evolves in an orderly
fashion and tends towards a self-similar solution of the form (8) at large times t. The time
dependence of the characteristic mass m∗(t) at large t and the behaviours of the scaling
function ϕ(x) at small and large x = mk/m∗(t) agree with the analytic predictions in [24, 25].
In particular, for the subset of cases with µ > 0, we disagreed with the earlier numerical
study in [19] and found that ϕ(x) does in fact approach the analytically predicted power-law
behaviour ϕ(x) ∝ x−(1+λ) at small x, but in a damped oscillatory fashion that was not known
previously (figure 7). For µ = 0, we determined the exponent τ of the power-law behaviour
ϕ(x) ∝ x−τ at small x.

On the borderline ν � 1 and λ = 1 (section 4.2), the numerical solution evolves in an
orderly fashion. For µ = 0, i.e. Aij ∝ i + j , the numerical solution is in excellent agreement
with the exact analytic solution and tends towards a self-similar solution of the form (8) at
large t. For µ > 0, the numerical solution appears to tend towards a self-similar solution of
the form (10), but we had limited success in comparing the behaviours of m∗(t) and ϕ(x) at
small x to the analytic predictions because the convergence to the self-similar solution is very
slow.

For ν � 1 and λ > 1 (section 4.3), the numerical mass spectrum nk develops in a finite
time t0 a power-law tail, nk ∝ k−τ , at large k that violates mass conservation, and runaway
growth/gelation is expected to start at tcrit = t0 in the limit that the initial number of particles
n0 → ∞. As t ↑ t0, the numerical solution tends towards a self-similar solution of the form
(11), with ϕ(x) ∝ x−τ at small x and m∗(t) diverging as (t0 − t)−1/σ . The exponent τ is in
general less than the analytic prediction (λ + 3)/2, and the exponent σ greater than the analytic
prediction (λ − 1)/2, but they satisfy the relation σ = λ + 1 −τ for self-similar solutions of
the form (11) (table 1). We studied the dependence of t0 on the exponents µ, ν and λ and
found that t0 = K/[(λ − 1)n0A11] and K = 1–2 if λ � 1.1 (table 1; figure 13). At t > t0,
nk ∝ k−(λ+3)/2 for mk � m′

∗(t), with m′
∗(t) → ∞ as t ↓ t0.

For ν > 1 (section 4.4), the behaviours of the numerical solution are qualitatively similar
to those found in [5]: the numerical mass spectrum develops a power-law tail of the form
nk ∝ k−ν at large k that is not self-consistent and the time at which the power-law tail develops
decreases towards zero as the numerical parameter nmin decreases. The numerical results
strongly suggest that there are no self-consistent solutions to the coagulation equation at any
time and that runaway growth/gelation is instantaneous in the limit n0 → ∞. They also
indicate that the time tcrit, in units of 1/(n0A11), for the onset of runaway growth decreases
slowly towards zero with increasing n0, consistent with recent Monte Carlo simulation results
[17].

The results presented in this paper and in [5] suggest several problems for future
investigations. First, as we pointed out in section 4.1, the failure to find the first correction
to the leading small-x behaviour ϕ(x) ∝ x−(1+λ) for the orderly growth cases with µ > 0 and
λ < 1 in previous self-similar analysis is probably due to the unusual, damped oscillatory
form of this correction. Given the information provided by the numerical results, it may now
be possible to derive the first correction analytically. We suggested that the first correction
could, e.g. be of the form x−(1+λ)f (x) cos(B ln x + C), where f (x) is an increasing function
of x. Second, we have found that the exponent τ for the runaway growth cases with ν � 1
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and λ > 1 is in general different from existing analytic prediction. It is important to investigate
whether an analytic prediction matching the numerical results could be derived. In this
connection, it would be useful to obtain numerical solutions for other forms of Aij and
determine whether the exponent depends on the specific form of Aij . Finally, it should be
emphasized that rate coefficients with ν > 1 do arise, and are of great interest, in astrophysics
(see, [4, 5] and references therein). For astrophysical applications, we are interested in
systems with finite n0 and interactions with the runaway particle. Thus, for ν > 1, a detailed
comparison of the numerical solutions with finite nmin and Monte Carlo simulations with finite
n0 should be conducted to test the correspondence between them, and the question of whether
the coagulation equation can be modified to take into account the interactions between the
runaway particle and the other particles should also be investigated.
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